• 02
  • 04
  • 01
  • 03
  • 05
  • 06
  • 02
  • 04
  • 01
  • 03
  • 05
  • 06

La Física y el Buceo

En este apartado vas a aprender las diferentes leyes físicas que rigen el mundo del buceo y cómo nos afectan cuando nos sumergimos.

  • LA VISIÓN SUBACUÁTICA
  • LOS SONIDOS
  • FLOTABILIDAD:
  • Principio de Arquímedes.

 

  • PRESIÓN Y VOLUMEN
  • Ley de Boyle-Mariotte
  • Ley de Dalton
  • Ley de Henry
  • Principio de Pascal
  • Ley de Charles

Todos sabemos que si dejamos un objeto libre a una cierta altura caerá, que si agitamos con una cuchara el azúcar que ponemos en el café se disolverá, sabemos que una piedra se hunde y que la madera flota, etc.

Todos estos fenómenos, que tenemos presentes, aún de forma inconsciente en nuestros actos, se rigen por principios y leyes físicas.
Pues bien, bajo el agua, la situación cambia, pues la aplicación de estas leyes en el medio acuático , que no es el nuestro, provoca resultados diferentes, y entran en juego otras leyes , a las que no estamos acostumbrados.


Al sumergirnos vamos a notar unas diferencias básicas, a las que, aunque al principio extrañas, nos acostumbraremos. Nuestra visión se acortará enormemente en distancia. Los sonidos, aunque escasos, los percibiremos en una nueva dimensión. Nuestro tacto se hará menos sensible, sobre todo si el agua está fría. El olfato no será utilizado. El gusto no nos será útil más que para apreciar el "sabor" del aire de nuestra botella, siempre un poco distinto del que estamos acostumbrados a respirar en el exterior, así como el del agua que nos rodea, sea salada o dulce.

Vamos a ver por que en el agua un objeto flota o se hunde, que ocurre con la presión al sumergirnos, que relación tiene con el volumen y como debemos actuar.

LA VISIÓN SUBACUÁTICA

Si al bañarnos en una piscina de aguas limpias abrimos los ojos bajo el agua, no podremos ver claramente. se nos ofrecerá una imagen borrosa. En cambio, en un acuario podremos ver con todo detalle los peces y objetos que contiene sumergidos.

La diferencia estriba en que en el primer caso, nuestros ojos están en contacto directo con el agua, y en cambio en el acuario existe un vidrio transparente que permite que haya una capa de aire entre el agua y los ojos.

Bajo el agua, para solucionar este problema, deberemos mantener los ojos en contacto con el aire, (que es el medio para el que la naturaleza nos ha preparado), mediante el uso de la máscara de buceo, interponiendo asi un espacio de aire entre nuestros ojos y el agua.

De los rayos de luz que llegan a la superficie del agua, hay una parte que se refleja en ella (tanto mayor cuanto más lejos se halle el sol de la vertical), mientras que otra penetra en la misma, experimentando no obstante una desviación al pasar del medio aéreo al acuoso, por ser los mismos de distinta densidad. A lo primero se le llama reflexión, mientras que el segundo fenómeno se conoce como refracción (lo que provoca que si miramos desde fuera del agua un objeto introducido parcialmente en ella, parece que esté "roto").

Por esta misma razón, la luz al pasar del medio aéreo (interior de la máscara) al acuoso, provoca que bajo el agua, los objetos se vean un tercera parte más grandes de lo que en realidad son y una cuarta parte más cerca.
Otro fenómeno que habremos de soportar será la menor cantidad de luz, ya que bajo el agua parte de esta será absorbida, desviada y reflejada, perdiendo capacidad lumínica a medida que la profundidad aumenta.

El resultado es que cuanto más bajemos menos luz tendremos. También van a variar los colores: La luz blanca está compuesta de diferentes colores (y que como es sabido son rojo, anaranjado, amarillo, verde, azul, añil y violeta) y estos van siendo absorbidos a medida que aumenta la profundidad. Los primeros colores en desaparecer son el rojo, el anaranjado, el amarillo... y asi por el orden indicado. Tornándose el paisaje, a medida que bajamos, en una tonalidad verdosa, tendiente al azul, hasta llegar (a partir de los 50-60 metros) a un azul monocromo, cada vez más oscuro. Si encendiésemos una luz, restableceríamos de golpe todos los colores, de aquí la utilidad de llevar una linterna entre el equipo de buceo, única forma de percibir los colores a una cierta profundidad.

LOS SONIDOS

En el agua los sonidos se propagan mucho mejor y a mayor velocidad que en el aire, a una velocidad aproximadamente cinco veces superior. Ello quiere decir que será más fácil oír los sonidos. No obstante, nos costará distinguir de que dirección procede.

 LA FLOTABILIDAD:

Principio de Arquímedes:

"Un cuerpo sumergido total o parcialmente en un líquido experimenta una fuerza ascendente igual al peso del líquido desplazado"

Si nos introducimos en el agua de la bañera de casa, veremos que el nivel de agua sube. Pues bien: Esa cantidad de agua que "aumentó", medida en litros, es igual al volumen de la parte de nuestro cuerpo que hayamos sumergido. Más sumerges, más sube el nivel. Y cuando sales de la bañera ves que éste desciende. A esa cantidad de agua le llamamos desplazamiento.

Sigamos con el ejemplo de la bañera. Ya estamos dentro de ella y el agua nos cubre casi todo el cuerpo. Percibiremos que pesamos muchísimo menos. Sin embargo nuestro cuerpo sigue siendo el mismo y pesa igual. Lo que realmente ocurre es que al sumergirnos en el agua nuestro cuerpo, igual que cualquier otro, experimenta un empuje hacia arriba igual al peso del agua que desaloja. Por eso tenemos la sensación de ser más ligeros; y es que dentro del agua nuestro peso es aparentemente menor.

Si dejásemos una pelota de ping-pong y otra de plomo del mismo tamaño, ambas desplazarían la misma cantidad de agua. En el primer caso flotaría, al pesar menos la pelota de ping-pong que el agua que desplaza, mientras que en el segundo caso, se hundiría la bola de plomo ya que su peso es mayor que el del agua que desaloja. De ahí podemos decir que un cuerpo flota cuando pesa menos que el agua que desplaza; y a la inversa: se hunde cuando pesa más.

El cuerpo humano, de promedio, tiene un peso muy similar al del agua. Ello supone que por cada Kilogramo de peso desplaza un litro de agua, que también pesa 1 Kg. Aceptaremos que al estar sumergido, ni se hunde ni flota. Un buceador sumergido estará prácticamente equilibrado. Diremos que tiene flotabilidad neutra. Asi mismo también diremos que la pelota de ping-pong tiene flotabilidad positiva y la bola de plomo tiene flotabilidad negativa.

Hemos visto que la fuerza ascendente que actúa sobre un cuerpo parcial o totalmente sumergido es igual al peso del líquido desplazado. Este peso depende de la densidad del líquido y del volumen del cuerpo sumergido.

El agua de mar contiene disueltos más minerales y sales que el agua dulce, por lo que pesa más, es más densa. Un buceador sumergido en agua de mar desplazará igual cantidad de agua que él mismo sumergido en agua dulce; sin embargo, puesto que el peso del agua de mar será mayor al del agua dulce, el empuje (o fuerza ascendente) será mayor en el primer caso que en el segundo. Es por eso que los cuerpos tienden a flotar mejor en agua de mar que en agua dulce.

Para nosotros es relativamente fácil hundirnos y salir a flote si sólo nos vestimos con trajes de baño. Sin embargo al utilizar un traje de buceo, nuestro volumen aumenta considerablemente, por lo que adquirimos flotabilidad positiva y se torna muy difícil sumergirnos. Por ello es necesario utilizar lastre adicional, para de tal forma volver a experimentar flotabilidad neutra o negativa.

Este mismo principio sirve también de base para el funcionamiento del chaleco hidrostático. Un buceador con mayor volumen desplazará mayor cantidad de agua que uno de menor volumen. Cuando un buceador inmerso en el agua infla su chaleco compensador, lo que está haciendo es aumentar su volumen, sin modificar su peso. Al aumentar su volumen aumenta también el volumen de agua desplazado, por lo que aumenta su empuje y adquiere flotabilidad positiva.

 PRESIÓN Y VOLUMEN

Los gases, al ser incapaces de mantener una forma o volumen, se reparten uniformemente por todo el volumen de su contenedor, siendo la densidad de un gas muchísimo menor que la de cualquier liquido o sólido. Existen diferentes gases, si bien a efectos de buceo los que nos interesan son los que componen el aire atmosférico: 79% de Nitrógeno, 20'97% de Oxígeno y 0'03% de Anhídrido Carbónico, principalmente.

Se define presión como la fuerza dividida por la superficie (P=F/S). Como unidad de presión utilizamos la atmósfera, que es la que ejerce el aire que nos rodea a nivel del mar (el peso de un cilindro de mercurio de 760 mm. de altura y cuya base tenga una superfície de 1 cm2). El valor de 1 atmósfera es la presión resultante de efectuar una fuerza de 1 Kg. en una superfície de 1 cm2 y aproximadamente equivale a un bar (1,03 bares = 1 atm.)

Hay que distinguir en buceo dos tipos de presión: la atmosférica (El peso del aire sobre la superficie del agua) y la hidrostática (el peso del agua sobre el submarinista), La suma de las dos presiones parciales nos da la absoluta, que es la que tomamos como referencia a la hora de realizar cálculos en buceo.

Cuando nos metemos bajo el agua experimentamos un aumento de presión (la correspondiente al peso del agua que hay sobre nosotros) cada vez mayor cuanta mas profundidad alcancemos. A esta presión hidrostática se sumará la presión del aire sobre la superficie del agua.

Sabiendo que una columna de agua de 10 m. de altura y 1 cm2 de sección contiene un litro de agua, y que éste pesa aproximadamente 1 Kg., obtendremos fácilmente que la presión ejercida por el agua en la base de dicha columna es de 1 Kg./cm2, es decir, 1 Atmósfera. Podemos decir que por cada diez metros de profundidad que el buceador desciende, la presión a que está sometido aumenta 1 Atmósfera.

Por todo lo anterior, podemos decir que:
Presión absoluta = presión hidrostática + presión atmosférica
Y sustituyendo los términos por sus valores, hallamos la relación entre profundidad y presión
Presión absoluta = (profundidad / 10) + 1
Aplicando la fórmula, podemos ver como varia la presión a medida que aumenta la profundidad:

A 0 metros (en superficie y a nivel del mar) 1 at.
A 10 metros (bajo el agua) 2 at.
A 20 metros (bajo el agua) 3 at.
A 30 metros (bajo el agua) 4 at.
A 40 metros (bajo el agua) 5 at.
No hay mas que sumar 1 at. (que tendríamos en superficie) a la presión hidrostática (1 at. por cada 10 metros descendidos).

Habrá que tener en cuenta que si la inmersión se realiza en un lago de montaña, con una gran altura sobre el nivel del mar, la presión atmosférica será menor.

El aumento de la presión externa a que se somete el cuerpo del buceador no tendría mayor importancia si no fuera porque hace entrar en juego las leyes que a continuación se enuncian, con los efectos que cada una tiene para el buceador.

 Ley de Boyle-Mariotte

 Relación entre la presión y el volumen de un gas.

A temperatura constante, el volumen de un gas es inversamente proporcional a la presión a la que es sometido.

o lo que es lo mismo: el volumen de un gas disminuye al aumentar la presión y aumenta al disminuir la presión.

De acuerdo con esta ley, si denominamos V1 al volumen de un gas al someterlo a una presión P1, y V2 al volumen del mismo gas al someterlo a otra presión P2, se enuncia:
P1 x V1 = P2 x V2
Si queremos hallar la relación entre el volumen de un gas al nivel del mar y el que tendrá a una determinada profundidad, deberemos aplicar esta fórmula junto con la anterior que relaciona presión y profundidad.

Pongamos un ejemplo: un globo de 1 litro de volumen que se encuentre a nivel del mar (sometido a 1 atmósfera de presión), al sumergirlo a 10 metros de profundidad (2 atmósferas) ocupará un volumen de ½ litro.

P1 x V1 = P2 x V2

1 atmósfera x 1 litro = 2 atmósferas x ½ litro.
Los efectos de esta ley se manifiestan sobre el aire que se encuentra en el interior de nuestro organismo (ya que los líquidos no pueden ser comprimidos), de forma que al aumentar la presión exterior se comprimirán todas las partes de nuestro organismo en que esto sea posible. En nuestro cuerpo hay varias cavidades que contienen aire y, por tanto,  se comprimen cuando buceamos. Si de alguna manera conseguimos igualar la presión interior con la exterior, habremos compensado y no notaremos molestia alguna, /82en caso contrario puede dar lugar a problemas de importancia.

La Ley de Boyle-Mariotte influye en el comportamiento del chaleco, ya que el aire que éste contiene modifica su volumen en función de la presión, es decir de la profundidad, y esta modificación de volumen incide de forma directa sobre la flotabilidad del buceador (en aplicación del principio de Arquímedes). Ello obliga a añadir o quitar aire cuando se aumenta o disminuye la profundidad, respectivamente.

Asimismo, debe tenerse en cuenta que esto también afecta al aire que se encuentra contenido entre la máscara y la cara del buceador, por lo que al descender disminuirá su volumen al descender, y será necesario inyectar aire en ese espacio por medio de la nariz. Al ascender aumentará de volumen y saldrá solo.

 Ley de Dalton.

Presiones parciales en mezclas gaseosas
La presión total ejercida por una mezcla de gases es la suma de las presiones parciales de los gases que componen dicha mezcla

Dicho de otra forma: a temperatura constante, la presión de una mezcla de gases es igual a la suma de las presiones a que estaría cada uno de los gases que la componen si ocupasen el volumen total de la mezcla.
P. Absoluta = P. Parcial (1) + P. Parcial (2) + P.Parcial (3) + ........
Dependiendo de la presión a que se someta un gas concreto, este afectará a nuestro organismo de una u otra forma. La Ley de Dalton nos permite conocer, cuando se efectúa una inmersión con aire, a qué profundidad cada gas contenido en el aire puede producir efectos nocivos para nuestro cuerpo.

Por ejemplo, la razón de que no se practique el buceo deportivo con oxígeno puro, evitando con ello los problemas que se derivan del nitrógeno contenido en el aire, es que este es tóxico a partir de una presión aproximada de 1’7 atmósferas, es decir, por debajo de los 7 metros de profundidad.

Para calcular la presión parcial de un gas contenido en una mezcla, dividiremos el porcentaje de ese gas por 100, y lo multiplicaremos por su presión.

Sabiendo que la composición aproximada del aire es 79% N2, 20'97% O2 y 0'03% CO2, tendremos que si ese aire lo respiramos en superficie, es decir, a una presión total de 1 At., las presiones a que estarán sometidos sus componentes serán de 0'79 At. el N2, 0'2097 At. el O2 y 0'0003 At. el CO2 (resultado de multiplicar 1 At. por el porcentaje que cada gas representa en la mezcla).

Aunque, como ya hemos dicho, el oxigeno puro comienza a ser tóxico a partir de 1,7 atmósferas de presión (7 metros de profundidad), sabemos que el oxígeno en el aire lo es a partir de 2,1 atmósferas. Para saber a qué profundidad el oxígeno de la mezcla será tóxico, sólo hay que resolver la siguiente ecuación, para hallar a qué presión total (que llamaremos pT) ocurrirá, sabiendo que la presión parcial tolerada del oxígeno es igual a 2'1 At.:

0'2097 x pT = 2'1 At.
pT = 2'1 / 0'2097 = 10'01 At.

Como hemos visto con anterioridad, para alcanzar dicha presión la inmersión debería realizarse a aproximadamente 90 metros de profundidad.

Del mismo modo sabremos que a partir de profundidades superiores a 30 ó 35 metros (siempre condicionado por otros muchos factores) se puede producir la llamada narcosis del nitrógeno o "borrachera de las profundidades" al superar el nitrógeno en el aire, la presión parcial de 4 atmósferas.

 Ley de Henry (Disolución de un gas a diferentes presiones).

A temperatura  constante, la cantidad de un gas que es absorbido por un líquido con el que se encuentra en contacto, es directamente proporcional a la presión.

Cuando a una temperatura constante, un gas entra en contacto con un líquido, se disuelve en él hasta el momento en que la presión exterior e interior alcancen el punto de equilibrio.

La importancia de esta ley para el buceador es capital, teniendo en cuenta que la sangre y tejidos se comportan como líquidos a estos efectos, y que por ello, al aumentar la profundidad y por tanto la presión, absorberán en mayor medida los gases que forman el aire que respira (y más aun si la temperatura baja). Si bien, de entre los principales componentes del aire, el anhídrido carbónico (CO2) por su poca presencia en el aire no representa un problema, ni el oxígeno tampoco, ya que es consumido por el organismo, el restante y más importante, el nitrógeno, gas inerte que no es consumido, es el responsable de una de los principales riesgos del buceo, la enfermedad descompresiva.

Por esta condición se ha fijado un tiempo aproximado de 12 horas para que los tejidos puedan librarse del nitrógeno saturado sobrante.
 


OTRAS LEYES DE INTERÉS
 
Principio de Pascal

Cuando una presión actúa sobre un volumen cerrado, la presión en su interior es igual en todas partes, y actúa perpendicularmente sobre las paredes de su contenedor

Al respirar aire bajo presión, todo el organismo recibe el gas de la mezcla instantáneamente y bajo la misma presión. Gracias a ello el ser humano puede permanecer dentro del medio acuático respirando normalmente.

Ley de Charles
A volumen constante, la presión de un gas varía de forma directamente proporcional a la temperatura

Si se dejan las botellas al sol, la presión del aire de su interior aumenta.
 
*( Fotos del manual B1 FEDAS)

Actividades CBS

loader

Eventos Próximos

Aucun évènement trouvé
Full Review Bet365 www.bbetting.co.uk